Interaction of apolipoprotein A-I in three different conformations with palmitoyl oleoyl phosphatidylcholine vesicles.
نویسندگان
چکیده
Interactions of apolipoprotein A-I (apoA-I) with cell membranes appear to be important in the initial steps of reverse cholesterol transport. The objective of this work was to examine the effect of three distinct conformations of apoA-I (lipid-free and in 78 A or 96 A reconstituted high density lipoproteins, rHDL) on its ability to bind to, and abstract lipids from, palmitoyl oleoyl phosphatidylcholine membrane vesicles (small unilamellar vesicles, SUV, and giant unilamellar vesicles, GUV). The molecular interactions were observed by two-photon fluorescence microscopy, and the binding parameters were quantified by gel-permeation chromatography or isothermal titration microcalorimetry. Rearrangement of apoA-I-containing particles after exposure to SUVs was examined by native gel electrophoresis. The results indicate that lipid-free apoA-I binds reversibly, with high affinity, to the vesicles but does not abstract a significant amount of lipid nor perturb the vesicle structure. The 96 A rHDL, where all the amphipathic helices of apoA-I are saturated with lipid within the particles, do not bind to vesicles or perturb their structure. In contrast, the 78 A rHDL have a region of apoA-I, corresponding to a few amphipathic helical segments, which is available for external or internal phospholipid binding. These particles bind to vesicles with measurable affinity (lower than lipid-free apoA-I), abstract lipids from the membranes, and form particles of larger diameters, including 96 A rHDL. We conclude that the conformation of apoA-I regulates its binding affinity for phospholipid membranes and its ability to abstract lipids from the membranes.
منابع مشابه
Interaction of human apolipoprotein A-I with model membranes exhibiting lipid domains.
Several mechanisms for cell cholesterol efflux have been proposed, including membrane microsolubilization, suggesting that the existence of specific domains could enhance the transfer of lipids to apolipoproteins. In this work isothermal titration calorimetry, circular dichroism spectroscopy, and two-photon microscopy are used to study the interaction of lipid-free apolipoprotein A-I (apoA-I) w...
متن کاملBiological reactivity of nanoparticles: mosaics from optical microscopy videos of giant lipid vesicles.
Emerging fields such as nanomedicine and nanotoxicology, demand new information on the effects of nanoparticles on biological membranes and lipid vesicles are suitable as an experimental model for bio-nano interaction studies. This paper describes image processing algorithms which stitch video sequences into mosaics and recording the shapes of thousands of lipid vesicles, which were used to ass...
متن کاملPhysical properties and surface activity of surfactant-like membranes containing the cationic and hydrophobic peptide KL4.
Surfactant-like membranes containing the 21-residue peptide KLLLLKLLLLKLLLLKLLLLK (KL4), have been clinically tested as a therapeutic agent for respiratory distress syndrome in premature infants. The aims of this study were to investigate the interactions between the KL4 peptide and lipid bilayers, and the role of both the lipid composition and KL4 structure on the surface adsorption activity o...
متن کاملInteraction of Phenol-Soluble Modulins with Phosphatidylcholine Vesicles
Several members of the staphylococcal phenol-soluble modulin (PSM) peptide family exhibit pronounced capacities to lyse eukaryotic cells, such as neutrophils, monocytes, and erythrocytes. This is commonly assumed to be due to the amphipathic, α-helical structure of PSMs, giving PSMs detergent-like characteristics and allowing for a relatively non-specific destruction of biological membranes. Ho...
متن کاملData including GROMACS input files for atomistic molecular dynamics simulations of mixed, asymmetric bilayers including molecular topologies, equilibrated structures, and force field for lipids compatible with OPLS-AA parameters
In this Data in Brief article we provide a data package of GROMACS input files for atomistic molecular dynamics simulations of multicomponent, asymmetric lipid bilayers using the OPLS-AA force field. These data include 14 model bilayers composed of 8 different lipid molecules. The lipids present in these models are: cholesterol (CHOL), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of lipid research
دوره 43 2 شماره
صفحات -
تاریخ انتشار 2002